他身上的气质很平静,像是一汪波澜不惊的湖水,又如同是大森林之中的千年古树。
带着一种婆婆勃勃生机的沉稳。
他的目光很是深邃,就里面就如同是有万千星辰,让人忍不住的想要去观看。
朗兰兹破解过无数的数学难题,同时也见识过无数的天才。
可是唯独面前的这个天才。让他有些琢磨不透。
朗兰兹说道:“我听说你破解了冰雹猜想,我最近也在研究你破解的方法,思路很对,理论很对,你很了不起,以后大有作为。”
“行了行了,你不是看不起人家吗?老家伙还是和我探讨探讨这道题吧。”
康德立马警觉了起来。
按照他的经验,老家伙说出这样的话,那就是有想抢夺人才的想法。
不行!必须要把这个萌芽遏制在摇篮中。
叶秋看着康德和朗兰兹两个人唇枪舌战,顿时觉得十分有意思。
任何一个领域都是这样的,要想把一个领域做到顶尖,这个人必须要有极为纯净的心智。
在叶秋的接触过程当中,研究数学的人基本上心智都很单纯。
面前的两位顶级数学家也是如此。
两个人对着一道题目争论不修,面红耳赤,似乎时光回溯叶秋刚进到屋子里面的那一幕。
叶秋好奇的拿过纸条,纸条上面就只有一道题目。
“对每个整数j21,有1≤a,≤2015;(ii)对任意整数1≤k<ξ,有kap≠ξa;证明:存在两个正整数b和n,使得z(a;-b)≤1007。”
这是一道证明难题。
叶秋看了一眼,脑子里面立马有了一个新的思路。
“两位老师,我能打断一下吗?”
康德和朗兰兹两个人争论的不可开交。
听到叶秋说话,两双睿智的眸子,纷纷看向他。
康德摸着下巴问道。
“你有什么新的想法?”
叶秋一笑:“也谈不上什么新的想法,就是有一丝自己的见解。我们或许可以从限定条件入手,这道题既然是想要证明正整数,那么我们可以让正整数和加,然后和加涅线条相互结合,如果能够求出正整数对面的非然质数,而后又非然质数查询正总数进行反论证的话,可能会简单一些。”
叶秋只是给了一个自己的思路。
正在他思考这个思路的可行性的时候,康德和朗兰兹的目光齐齐的看向叶秋。
朗兰兹不可置信地点着桌子。
他开口问道。
“你之前做过这道题吗?”
叶秋微微一笑:“怎么可能?我从来都没有做过。”
“可是你为什么会在短时间之内有思路。”
“但是我的思路不一定会是正确的。”
即便是这样,康德和朗兰兹二人也是震惊不已。
他们面临的可是世界著名的一道难题。
在面对这样的时候,很多人会手足无措,甚至数学基本入门者根本看不懂这道题目在表达着什么。
往往很多的著名数学家就要反复的题目,从题目中找出一根引线后才会有思路。
可是叶秋只是看了几遍之后立马就有了思路。
这不是天才是什么?